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BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with 
non–small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway 
inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune 
microenvironment remains limited.

METHODS. We performed comprehensive flow cytometric immunoprofiling on both 
tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and 
histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 
immunohistochemistry (IHC).

RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T 
cells expressing high levels of PD-1 and TIM-3 and an immunologically “cold” cluster with lower 
relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was 
highly enriched for expression of genes associated with T cell trafficking and cytotoxic function 
and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS 
or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous 
subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately 
20% of cases had high B cell infiltrates with a subset producing IL-10.

CONCLUSIONS. Our results support the use of immune-based metrics to study response and 
resistance to immunotherapy in lung cancer.
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Introduction
The development of  therapies that block inhibitory receptors expressed by T lymphocytes has revolu-
tionized cancer treatment. The Food and Drug Administration approved the use of  the PD-1 inhibitor 
nivolumab for treatment of  advanced squamous non–small-cell lung cancer (NSCLC) in March of  2015 
(1, 2); this approval was later extended to nonsquamous NSCLC in October of  that same year, the same 
month that the PD-1 inhibitor pembrolizumab was granted accelerated approval for treatment of  advanced 
NSCLC expressing the PD-1 ligand PD-L1 (3). Approval of  both agents for NSCLC constituted a water-
shed moment for immunotherapy and also for the treatment of  lung cancer, which is the second most com-
mon cancer type and the leading cause of  cancer death in the United States (4). There are currently over 
100 ongoing clinical trials involving PD-1/PD-L1 pathway blockade in NSCLC.

While clinical responses to immunomodulatory agents have been impressive, the field has been striving 
to better understand response and resistance to improve patient selection and to aid in the design of  rational 
combination therapy approaches. Objective response rates to nivolumab treatment of  33% (2), 15% (5), and 
20% (6) have been reported for squamous NSCLC; and rates of  12% (2), 17% (7), and 19% (1) for have been 
reported for nonsquamous NSCLC. Comparable response rates of  19.4% (3) and 23% (8) have been report-
ed for the PD-1 inhibitor pembrolizumab and the PD-L1 inhibitor atezolizumab, respectively, for either 
histological subtype. Higher objective response rates have been observed in NSCLC patients with PD-L1+ 
tumors, as assessed by immunohistochemistry (IHC) (3, 8), and, in particular, responses were highest in 
patients with PD-L1+ immune cells (8). However, PD-L1 IHC has limitations as a diagnostic; the response 
rates are generally higher in PD-L1+ tumors but approach a maximum of  39% (9) or 45% (3) in tumors 
with >50% PD-L1 positivity and some PD-L1– tumors also respond to therapy. The methods to assay and 
interpret PD-L1 IHC are both diverse and subjective and require further validation, as early results from the 
BluePrint PD-L1 Assay Harmonization Study have shown (10).

The immune microenvironment is complex, dynamic, and spatially heterogeneous. There are numerous 
immunosuppressive mechanisms in addition to the PD-1/PD-L1 axis, which may explain why an immuno-
logical metric such as PD-L1 IHC positivity is predictive of  response to anti–PD-1 therapy in less than half  of  
patients. T cells are capable of  expressing multiple inhibitory receptors concurrently, and this compensatory 
upregulation may account for resistance to PD-1 blockade. For instance, it has recently been demonstrated 
that the alternative immune checkpoint TIM-3 is upregulated by T cells engaged by anti–PD-1, and this may 
explain adaptive resistance to anti–PD-1 therapy (11). Response to checkpoint blockade is also likely affected 
by cytotoxic T lymphocyte–extrinsic (CTL-extrinsic) factors as well, such as the presence of  myeloid-derived 
suppressor cells (MDSCs) and FOXP3+ Tregs, the latter of  which have been documented in NSCLC (12). The 
presence of  MDSCs and Tregs in NSCLC is positively correlated with an abundance of  IL-10–producing B 
regulatory cells (Bregs); all three are associated with NSCLC progression (13).

Response to anti–PD-1 therapy in NSCLC may also be affected by traditional stratifying criteria, such 
as histological subtype, specific oncogenic driver mutations, and smoking history. For instance, low PD-1 
expression in the tumor is correlated with KRAS mutation and low PD-L1 expression is correlated with the 
presence of  EGFR mutations (14). Activating EGFR mutations and adenocarcinomas are more commonly 
found in never-to-light smokers as compared with smokers, whereas there is a stronger association between 
smoking and the squamous subtype (15). Smoking is known to increase the prevalence of  somatic mutations. 
Higher mutation rates have been shown to increase the probability that tumors display neoantigens that can 
trigger T cell–mediated tumor cell lysis and, by extension, enhance response to checkpoint blockade (16).

It is important to understand the immunological landscape of NSCLC, as this information might reveal 
mechanisms of response and resistance to specific immunomodulatory agents and inform future development 
of more effective combination approaches. Comprehensive immunoprofiling may enable identification of  
robust metrics for determining candidacy to receive specific immunomodulatory therapies, and some approach-
es, including multiplexed slide-based analysis (17) and gene expression profiling (18), have been used to define 
components of the NSCLC immune microenvironment, with the goal of developing more robust biomark-
ers beyond PD-L1 IHC. To this end, we performed in-depth immunoprofiling by flow cytometry and focused 
mRNA profiling of immuno-oncology relevant genes and used a multidimensional cluster algorithm (19, 20) to 
determine if  distinct immunological subtypes exist in NSCLC and whether these features correlate with muta-
tion status, histological subtype, PD-L1 IHC, and smoking history. Our studies identified heterogeneity in the 
NSCLC immune microenvironment and suggest that different immunotherapy approaches may be needed for 
specific subsets of NSCLC patients.
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Results
Characteristics of  the NSCLC data set. We compiled a data set with clinical 
annotation (Table 1) of  51 freshly resected NSCLC samples, including 
immunohistochemical determination of  PD-L1 status, next-generation 
sequencing (21, 22), digital droplet PCR for oncogenic driver mutations, 
mRNA expression analysis by Nanostring, and comprehensive immu-
noprofiling of  dissociated bulk resected tumors by multiparametric flow 
cytometry. As part of  our effort to comprehensively characterize the tumor 
immune microenvironment of  NSCLC, we utilized multiple antibody pan-
els (Supplemental Figure 1; supplemental material available online with this 
article; doi:10.1172/jci.insight.89014DS1) to determine the abundance of  
major immune cell lineages. We focused on the characterization of  CD4+ 
and CD8+ T cells, including their differentiation status (FOXP3, CCR7, 
CD45RA, CD45RO), expression of  activation markers (CD69, CD11a, 
CD38) and inhibitory receptors (PD-1, TIM-3, LAG-3, CTLA-4), and their 
proliferation (Ki-67). We also used flow cytometry to measure PD-L1 and 
PD-L2 expression on monocytes, granulocytes, and tumor cells (defined as 
CD45–EpCAM+). Clinical, pathologic, and genomic data are shown for each 
sample, along with proportions of  T cells, B cells, granulocytes, monocytes, 
NK cells, and NT T cells (Figure 1). There was considerable variability in 
the proportion of  immune cells that were CD8+ T cells, from 1.4% to 44.6% 
(mean 11.50% ± 1.476%, SEM, Figure 1). Tumors also exhibited marked-
ly heterogeneity in total leukocyte infiltrate, with CD45+ cells comprising 
percentages as low as 16% or as high as 97.3% of  live cells (mean 69.95% ± 
3.074%, SEM). Similarly, we observed a high degree of  heterogeneity in the 
immune infiltrate across this set of  tumors.

We performed unsupervised hierarchical clustering on tumor and 
matched normal lung samples using comprehensive immunophenotypic 
data (Figure 2). As expected, normal lung tissue samples clustered together 
and tumor samples clustered together. We observed a relative absence in 
expression of  inhibitory receptors by CD4+ and CD8+ T cells in normal lung 
as compared with tumors. It is notable that tumors clustering with normal 
lung displayed high granulocytic infiltrate, which is what we consistently 
observe in normal lung (Figure 2).

We first analyzed major leukocyte lineages based on clinical, genomic, 
and histopathologic criteria. We observed no significant difference in the 
immune cell subsets in tumors from patients who had never smoked as com-
pared with patients with a history of  tobacco use (Figure 3A). There was 
also no significant difference when immune infiltrates were compared by 

tumor histology, although squamous tumors displayed a slight enrichment (P < 0.05) in granulocytes as 
compared with adenocarcinoma (Figure 3B). Furthermore, there were no significant immune cell differenc-
es in KRAS mutant tumors or EGFR mutant tumors or tumors that did not harbor mutations in either of  
these genes (Figure 3C). Compared with normal lung, tumors consistently showed a significantly increased 
abundance of  CD19+ B cells, FOXP3+ Tregs, CD8+ T cells, and particularly CD45RO+ memory CD8+ T 
cells and a significant relative lack of  NK cells and NK T cells (Figure 3B). We observed increased CD8+ 
T cells and memory CD8+ T cells in PD-L1+ tumors as compared with PD-L1– tumors (Figure 3D). There 
was no statistically significant difference in immune cell populations among samples that were PD-L1+ in 
tumor cells (TC+IC+ and TC+IC–) compared with those that were PD-L1+ only in immune cells (TC–IC+) 
(Figure 3D).

Due to the use of  PD-1 inhibitors for the treatment of  NSCLC and the known upregulation of  addi-
tional checkpoint receptors that may be associated with resistance to PD-1 therapy (11), we analyzed the 
expression of  PD-1, TIM-3, CTLA-4, and LAG-3 on CD4+ and CD8+ T cells. Smoking status did not 
significantly correlate with inhibitory receptor expression (Figure 4A and Supplemental Figure 2). There 
was significantly increased expression of  inhibitory receptors by CD4+ T cells in squamous tumors rel-

Table 1. NSCLC sample characteristics

Sample characteristic No. (%)
Total NSCLC cases 51 (100%)
Sex

Male 21 (41%)
Female 29 (57%)

Race
European descent 43 (84%)

Asian 2 (4%)
African-American 3 (6%)

Unknown 3 (6%)
Histology

Adenocarcinoma 42 (82%)
Squamous 7 (14%)

Adenosquamous 1 (2%)
PD-L1 immunohistochemistry completed 43 (84%)

Tumor cell+/immune cell+ 7 (14%)
Tumor cell+/immune cell– 2 (4%)
Tumor cell–/immune cell+ 5 (10%)
Tumor cell–/immune cell– 29 (57%)

Next-generation sequencing or ddPCR 
completed

50 (98%)

KRAS mutation 18 (35%)
EGFR mutation 7 (14%)

Nanostring expression analysis completed 29 (57%)
Neoadjuvant chemotherapy

Treated with neoadjuvant chemotherapy 7 (14%)
Did not receive neoadjuvant chemotherapy 42 (82%)
Stage (A and B)

I 23 (45%)
II 10 (20%)
III 9 (18%)
IV 7 (14%)

Smoking status
>30 pack years 19 (37%)
≤30 pack years 20 (39%)
Current smoker 6 (12%)
Former smoker 33 (65%)
Never smoker 11 (22%)

 

Downloaded from http://insight.jci.org on October  5, 2016.   http://dx.doi.org/10.1172/jci.insight.89014



4insight.jci.org   doi:10.1172/jci.insight.89014

C L I N I C A L  M E D I C I N E

ative to adenocarcinoma. For CD8+ T cells, we observed no significant difference in levels of  PD-1 and 
TIM-3 in squamous tumors compared with adenocarcinoma, but we did observe significantly elevated 
CTLA-4 in squamous tumors. Squamous tumors also displayed significantly increased coexpression of  
TIM-3 and PD-1 in both CD8+ and CD4+ T cells (Supplemental Figure 2). Inhibitory receptor expression 
was uniformly higher in tumor samples when compared with normal lung (Figure 4B). In adenocarci-
nomas, KRAS-driven tumors exhibited significantly increased expression of  PD-1 on both CD4+ and 
CD8+ T cells relative to EGFR-driven and KRAS/EGFR– tumors (Figure 4C). Both CD4+ and CD8+ 
T cells from PD-L1+ tumors displayed significant upregulation of  individual inhibitory receptors and, 
similar to what we observed with our analysis by leukocyte lineage (Figure 3D), there were no significant 
differences in PD-1, TIM-3, and CTLA-4 expression between PD-L1 TC+ and TC–IC+ tumors (Figure 
4D). TC+ and TC–IC+ tumors also had increased coexpression of  TIM-3 and PD-1 on CD4+ and CD8+ T 
cells relative to PD-L1– tumors (Supplemental Figure 2). LAG-3 was uniformly not expressed by T cells 
across our NSCLC cohort.

NSCLCs cluster into distinct immunophenotypes. With the expanding clinical application of  immunomod-
ulatory agents such as PD-1 blockade for treatment of  NSCLC, knowledge of  the immunophenotype of  
the tumor with a high degree of  granularity may enable the development of  robust biomarkers for patient 
selection. We employed the t-distributed stochastic neighbor embedding (t-SNE) multidimensional reduction 
algorithm (19, 23) to analyze our multiparametric immunophenotypic data in an unbiased manner. Close 
proximity individual NSCLC cases indicate immunophenotypic similarity. Tumor samples separated into 
two main groups, which we denoted as immunologically “hot” cluster 1 and immunologically “cold” cluster 
2, and a third small group defined by high granulocytic infiltrate (gran+) that we grouped within the “hot” 
cluster based on proximity and shared T cell phenotypic markers (Figure 5). The immunologically “hot” 
cluster was differentiated by the presence of  inflammatory markers, including an abundance of  CD8+ T cells 
and high expression of  inhibitory receptors — particularly PD-1 and TIM-3 — on those CD8+ T cells (Figure 
5, A–C). This cluster was further differentiated by infiltration of  FOXP3+ Tregs and by expression of  PD-L1 
on tumor cells and immune cells (Figure 5, D–F). Tumor cell PD-L1 positivity by IHC is directly correlated 
with PD-L1 expression on EpCAM+ tumors cells, as detected by flow cytometry (Supplemental Figure 3).

We also observed intracluster heterogeneity, with notable examples indicated by arrows and reference 
case numbers (Figure 5, A–C, E, and F). For example, case 78 displayed high CD8+ T cell infiltrate with 
high coexpression of  PD-1 and TIM-3, compared with case 25, which had high CD8+ T cell infiltrate with 
no expression of  PD-1 or TIM-3. Case 23 had high PD-1 expression by CD8+ T cells and high PD-L1 

Figure 1. Clinical characteristics of NSCLC data set. Major immune cell lineages profiled from 51 NSCLC patients are depicted as the percentage of live cells and 
arranged by increasing percentage of CD8+ T cells. Colored tile tracks above indicate smoking status, histological subtype, mutant KRAS or EGFR, and PD-L1 IHC.
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staining on tumor cells but no TIM-3 on CD8+ T cells. We observed a highly significant positive correlation 
between PD-1 and TIM-3 expression by both CD8+ and CD4+ T cells (Supplemental Figure 4). There were 
no cases in which CD8+ T cells expressed TIM-3 and not PD-1, but in approximately 20% of  cases CD8+ 
T cells expressed PD-1 and not TIM-3. It is our hope that multicolor flow cytometry will be employed in 
future prospective studies of  patients receiving immunotherapy and that the high level of  immunopheno-
typic granularity generated by this methodology may help explain heterogeneity in response to anti–PD-1 
therapy in NSCLCs and/or tumors with high degrees of  lymphocytic infiltrates.

Adenocarcinomas were equally distributed between “hot” and “cold” clusters, whereas squamous 
tumors were enriched in the “hot” cluster (Figure 5G). Mutant KRAS and EGFR were not associated with 
immunophenotype, even though all 8 EGFR-mutated tumors were PD-L1– by IHC (Figure 5H). Heavy 
smokers (>30 pack years) appeared concentrated in the “hot” cluster relative to smokers (<30 pack years) 
and never smokers, but this was not statistically significant. We also analyzed smoking status based on pack 
years and found a trending correlation (P = 0.11) between immunophenotype and smoking status, with 
higher pack year smokers concentrated in the “hot” cluster (Figure 5I).

Forty-two of  fifty-one of  our cases were profiled by next-generation sequencing (21, 22). A forthcom-

Figure 2. Clustering of NSCLC data set. Unbiased hierarchical clustering of 51 NSCLC samples and, where available, matched normal lung (top row). 
Immune parameters measured by multicolor flow cytometry are listed. Tiles are shaded by percentage of expression of markers.
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ing publication shows that somatic mutational burden quantified from whole-exome sequencing and muta-
tion burden extrapolated from this platform are well correlated (24). We, therefore, used the total number 
of  mutations from our OncoPanel results as a proxy and found that mutational burden was significantly 
higher in tumors in the “hot” cluster (Figure 5J). Mutational burden also correlated with smoking status, as 
expected (Supplemental Figure 5).

Immunologically “hot” NSCLC tumors display unique phenotype. The unbiased t-SNE clustering was based 

Figure 3. Immune cell lineages by clinical features. Percentages of total CD45+ cells based on smoking history (A), histological subtype (B), oncogene 
status (C), and PD-L1 immunohistochemical scoring (D) of tumor cells (TC+) and immune cells (IC+) of major immune cell lineages that vary significantly 
between tumors are presented. Data for bar graphs were calculated using unpaired Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001. Mean with SD. 
Two-way ANOVA: smoker vs. never smoker, P = 0.4207; adenocarcinoma vs. squamous, P = 0.0362; adenocarcinoma vs. normal lung, P = 0.6034; squa-
mous vs. normal lung, P = 0.0332; EGFR vs. KRAS, P = 0.1901; KRAS vs. neither, P = 0.9915; EGFR vs. neither, P = 0.2636; TC+ vs. IC+, P = 0.9990; TC+ vs. 
negative, P = 0.0630; IC+ vs. negative, P = 0.1667..
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on flow cytometric profiling, and, in order to augment our classification of  immunologically “hot” and 
“cold” tumors, we performed a focused transcriptomic analysis using the Nanostring Human PanCan-
cer Immune Profiling Panel (18). Our “hot” cluster showed significant enrichment in CXCL9, CXCL10, 
IDO1, granzyme B, IFN-γ, and STAT1, which aligns with the “IFN-γ signature” reported elsewhere (25, 

Figure 4. T cell expression of inhibitory receptors by clinical features. Percentage of expression of inhibitory receptors PD-1, TIM-3, and CTLA -4 by CD4+ 
T cells (left) and CD8+ T cells (right) based on smoking history (A), histological subtype (B), oncogene status (C), and PD-L1 immunohistochemical scoring 
(D) of tumor cells (TC+) and immune cells (IC+). Data for bar graphs were calculated using unpaired Student’s t test with. *P < 0.05; **P < 0.01; ***P < 
0.001. Mean with SD. Two-way ANOVA CD4+ T cells: smoker vs. never smoker, P = 0.2314; adenocarcinoma vs. squamous, P < 0.0001; adenocarcinoma vs. 
normal lung, P < 0.0001; squamous vs. normal lung, P < 0.0001; EGFR vs. KRAS, P = 0.2450; KRAS vs. neither, P = 0.1272; EGFR vs. neither, P = 0.0619; TC+ 
vs. IC+, P = 0.1038; TC+ vs. negative, P < 0.001; IC+ vs. negative, P = 0.3626. Two-way ANOVA CD8+ T cells: smoker vs. never smoker, P = 0.0433; adenocarci-
noma vs. squamous, P = 0.0017; adenocarcinoma vs. normal lung, P = 0.0083; squamous vs. normal lung, P < 0.0001; EGFR vs. KRAS, P = 0.0759; KRAS vs. 
neither, P = 0.9649; EGFR vs. neither, P = 0.0972; TC+ vs. IC+, P = 0.2742; TC+ vs. negative, P < 0.0001; IC+ vs. negative, P = 0.0025.
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26) and validates our flow clustering methodology (Figure 6). This signature has previously been shown to 
enrich for tumors responsive to pembrolizumab anti–PD-1 therapy (25). A fully annotated list of  signifi-
cantly upregulated and downregulated genes is available in Supplemental Figure 6.

Given the high concordance among flow cytometry–based t-SNE clustering, PD-L1 IHC, histological 
classification, smoking history, mutational load, and RNA expression analysis, we sought to find the small-
est combination of  immune parameters that recapitulated the features of  our larger data set as a means 
to simplify biomarker development. The percentage of  CD8+ T cells positive for TIM-3 expression (P = 
7.39E-08), the percentage of  CD8+ T cells positive for PD-1 expression (P = 2.17E-06), and the abundance 
of  CD8+ T cells (P = 1.06E-04) were among the markers most significantly different between “hot” and 
“cold” clusters. We then recalculated the t-SNE plots based on only those 3 markers and found near-perfect 
recapitulation of  the “hot” and “cold” clusters, with only one case moving from “cold” to “hot”; that one 
case displayed the highest percentage of  PD-1 and TIM-3 expression by CD8+ T cells within the higher-pa-
rameter “cold” cluster (Figure 7A). We conclude that as few as 3 immune parameters, specifically TIM-3 
and PD-1 expression on CD8+ T cells and presence of  CD8+ T cells, can be utilized as a proxy to differen-
tiate immunologically “hot” versus “cold” NSCLCs. Furthermore, we propose a model that includes these 
criteria as a possible metric to assess favorability to immunotherapy (Figure 7B).

NSCLCs are enriched for CD19+ B cells compared with normal lung tissue. We noted high B cell infiltrate 
in a subset of  tumors, which ranged from 0%–29.7% of  total live cells (mean 6.159% ± 1.006%, SEM) 
(Figure 1). We further analyzed tumor-associated B cells by IHC and flow cytometry. The presence of  
B cell–rich tertiary lymphoid structures (TLSs) adjacent to tumor margins is a good prognostic factor 
in many cancers, including NSCLC (27). We found abundant TLSs in the tumor sections we surveyed 
and that the TLS score correlated well with total CD19+ B cell count measured by flow cytometry (Sup-
plemental Figure 7, A–D). We did not, however, see a significant difference in TLSs between “hot” and 
“cold” clusters (Supplemental Figure 7E). As part of  our flow cytometry B cell profiling, we observed a 
small, but reproducible population of  CD24hiIL-10+ Bregs (28) in tumor but not normal lung tissue (Fig-
ure 8A). IL-10 is the only definitive marker for Bregs, but it is difficult to measure by flow cytometry due 
to its low intracellular accumulation. To identify additional phenotypic markers for flow cytometry that 
could be more sensitive than IL-10 and used as a surrogate for this population, we sorted B cells from 
a NSCLC tumor with high B cell infiltrate and also B cells from matched normal lung and generated 
RNA sequencing (RNAseq) data with single-cell resolution (29, 30). In total, 130 cells (47 from normal 
lung, 83 from tumor) passed our quality control filters. Of  these 130 cells, we discovered a total of  9 
IL-10–expressing B cells, all of  which were sorted from the tumor and were not present in normal lung 
tissue. The top 20 most significantly downregulated and upregulated genes are highlighted by P value as 
a function of  expression (Figure 8B). We did not uncover any novel candidate surface markers that could 
be used for future phenotypic identification of  these IL-10–producing B cells, nor did we observe an 
enrichment for canonical Breg surface markers CD24, CD27, or CD38. We did, however, perform gene-
set enrichment analysis (GSEA) using a rank list of  all genes that were significantly downregulated or 
upregulated between IL-10–producing and IL-10– B cells and, by this methodology, observed that these 
IL-10–producing B cells displayed a transcriptional profile resembling a plasma cell gene signature and 
not a naive or memory B cell signature (Figure 8C). IL-10–producing B cells also displayed an activated 
MYC signature. We observed a similar ratio of  Igκ/Igλ between normal lung B cells and tumor B cells 
and between IL-10+ B cells and IL-10– B cells, suggesting the absence of  clonality in any of  these subsets 
(Supplemental Figure 8). This single-cell transcriptomic analysis of  B cells provides initial insight into 
the biology of  NSCLC-associated IL-10–producing B cells.

Discussion

Figure 5. NSCLCs align into immunologically “hot” and “cold” clusters. The t-distributed stochastic neighbor embedding (t-SNE) algorithm assigned 
NSCLC cases into 2 clusters (dotted ovals). t-SNE plots are identical by NSCLC case coordinate (i.e., each dot is a case and is in the same place in all 10 plots). 
Percentage of CD8+ T cells of CD3+ lymphocytes (A), percentage of PD-1 expression on CD8+ T cells (B), percentage of TIM-3 expression on CD8+ T cells (C), and 
percentage of FOXP3+ Tregs of CD4+ T cells (D), with gradient color coding of blue (low) to red (high). Percentage of PD-L1 expression on tumor cells by IHC (E), 
percentage of PD-L1 expression on immune cells by IHC (F), histological subtype (G), oncogene status (H), and smoking status (I) are overlaid on t-SNE plots. 
(J) Mutation burden is shown with gradient color coding of blue (low) to red (high). Vertical scatter plot statistics are analyzed using unpaired Student’s t 
test and stacked bar graphs are analyzed by Fisher’s exact test. **P < 0.01; ***P < 0.001. Mean with SD. Light gray circles on t-SNE plots indicate data not 
available. Notable examples are indicated by arrows and reference case numbers.
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NSCLC is a heterogeneous disease 
on a molecular level, and, according 
to our results, it is also heterogeneous 
immunologically. The presence of  
leukocytes, specifically T cells, and 
their expression of  inhibitory recep-
tors targeted by checkpoint blockade 
likely affects the success of  such thera-
peutics. NSCLCs have higher CD8+ T 
cell infiltrate, particularly CD45RO+ 
memory CD8+ T cells, relative to nor-
mal lung tissue, with no difference 
between histological subtypes (Figure 
3B). NSCLCs also display signifi-
cantly increased expression of  inhib-
itory receptors PD-1, TIM-3, and 
CTLA-4 in both CD4+ and CD8+ T 
cells relative to normal lung, with lit-
tle (CTLA-4) or no difference (PD-1, 
TIM-3) between adenocarcinoma and 
squamous for CD8+ T cells (Figure 
4B). Yet across tumors there are gradi-
ents of  T cell infiltrate and expression 
of  inhibitory receptors.

In addition to analysis of  indi-
vidual immunological characteristics on the basis of  clinical features, we also analyzed our flow cyto-
metric immunophenotypic data collectively using an unbiased clustering algorithm. The multidimen-
sional reduction methodology t-SNE revealed distinct “hot” versus “cold” clusters (Figure 5). The 
“hot” cluster was distinguished by the squamous subtype and high CD8+ T cell infiltrate, with high 
coexpression of  PD-1 and TIM-3 (Supplemental Figure 2). Tumors in this cluster also displayed high 
PD-L1 on tumor cells and immune cells by both flow cytometry and PD-L1 IHC, which were highly 
correlated (Figure 5, E and F, and Supplemental Figure 3). It is interesting that cases with high gran-
ulocytic infiltrate and, by extension, lower CD8+ T cells counts, formed a subgroup within the “hot” 
cluster, raising the possibility of  granulocyte-associated T cell suppression as a mechanism of  immune 
evasion in this subset. Our data suggest that the total number of  CD8+ T cells within the tumor is not 
sufficiently predictive of  the immunophenotype and that it is important to also know if  the T cells 
express PD-1, TIM-3, both, or other immune checkpoints. CD8+ T cells from granulocyte-high tumors 
displayed high PD-1 and TIM-3 expression (Figure 5, B and C), indicating a suppressed antitumor 
immune response (Figure 7B).

Figure 6. “Hot” cluster is enriched for 
CTL/Th1-associated genes. Normalized 
mRNA expression of signature genes 
is presented for “hot” and “cold” clus-
ters. CXCL9 (A), CXCL10 (B), IFN-γ (C), 
granzyme B (D), IDO1 (E), STAT1 (F), and 
TIM-3 (H) are upregulated and GM-CSF 
(G) is downregulated in the “hot” 
cluster relative to the “cold” cluster. 
In violin plots, horizontal lines depict 
medians, with narrow shaded boxes 
representing the first-to-third inter-
quartile range and vertical lines repre-
senting the lower-to-upper adjacent 
value range. P values were calculated 
with unpaired Student’s t test.
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In order to corroborate our flow-based clustering and IHC data, we also performed mRNA expression 
analysis on 29 of  our 51 samples. Tumors in the “hot” cluster were enriched for T cell chemoattractants 
CXCL9 and CXCL10 and CTL/Th1-associated genes IFN-γ and granzyme B (Figure 6). Based on our 
immunophenotypic data, the immunologically “hot” subset of  NSCLC is characterized by inflammatory 
CD8+ T cell infiltrate, PD-L1 IHC positivity, and PD-1 and TIM-3 positivity on CD8+ T cells and cor-
related with increased tobacco use, high mutation burden, and squamous histology but not with KRAS or 
EGFR mutation status (Figure 5 and Figure 6). This collective data supports the concept that there is an 
ongoing antitumor immune response in the “hot” subset of  NSCLC that is suppressed.

While a critical accumulation of  tumor-infiltrating leukocytes is likely required for targeted immuno-
therapies to be successful, simple quantification of  leukocyte populations does not capture immune cell 
phenotypic variation, such as expression of  inhibitory receptors and their ligands within the tumor micro-
environment. Many immunotherapy biomarker studies perform PD-L1 IHC scoring for tumor cells only 
and do not include PD-L1 scoring for immune cells. Our data show that TC–IC+ and TC+ have similar 
leukocyte infiltrates (Figure 3D) and similar expression of  PD-1 and other immune checkpoints (Figure 
4D). Therefore, patients who score as PD-L1– by many IHC tests may be, immunologically speaking, indis-
tinguishable from PD-L1+ patients. Relying solely on tumor cell PD-L1 IHC scoring to predict sensitivity 
to PD-1/PD-L1 blockade, therefore, excludes some patients who may respond to anti–PD-1 therapy. It 
is these patients with tumor cell and/or immune cell PD-L1+ tumors that populate our “hot” cluster and 
have the highest levels of  CD8+ T cells with expression of  PD-1 and TIM-3 (Figure 5). Therefore, inclu-
sion of  immune cell PD-L1 scoring into PD-L1 IHC diagnostics may enable that test to more accurately 

Figure 7. Limited CD8+ T cell markers predict NSCLC immunophenotypes. (A) NSCLC cases were reanalyzed using t-distributed stochastic neighbor 
embedding (t-SNE) algorithm based on only 3 parameters: percentage of CD8+ T cells of CD3+ lymphocytes, percentage of TIM-3 expression on CD8+ T cells, 
and percentage of PD-1 expression on CD8+ T cells. The structure of “hot” and “cold” clusters matched what was observed for multiparameter clustering. 
(B) Proposed model of immunotherapy-favorable immunophenotype of NSCLC based on limited T cell–intrinsic factors.
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recapitulate the immunophenotypic features indicative of  our “hot” cluster (Figure 5). If  the critical factor 
underlying the response to checkpoint blockade is presence of  leukocytes, however, then hybrid IHC/flow 
cytometry–based readouts may improve upon PD-L1 IHC as an immune biomarker. Only prospective 
studies with immunoprofiling before and after treatment can answer these questions as to what degree leu-
kocyte abundance and phenotype can predict response to anti–PD-1/PD-L1 therapy.

In our study smoking status and mutational genotyping do not predict immunological features of  
NSCLC. There are varying reports of  associations between mutant EGFR and KRAS and PD-L1 expres-
sion, indicating that genomic data may predict response to single-agent anti–PD-1 (31, 32). However, we 
did not observe a correlation between KRAS mutation and immunophenotype or PD-L1 IHC. EGFR 
tumors were all negative for PD-L1 expression on tumor cells but did not cluster preferentially as immu-
nologically “hot” or “cold” (Figure 5H). Lack of  PD-L1 expression by mutant EGFR lung tumors may 
explain their recently reported low response rates to PD-1 pathway blockade (33). Our data demonstrate 
that mutation status is not illustrative of  immunophenotype and corroborate previous studies in which nei-
ther EGFR or KRAS mutations predicted successful response to anti–PD-1 therapy (34, 35).

Current and former smokers have higher PD-L1 expression compared with never smokers, and this 
is thought to explain the higher objective response rate of  smokers to anti–PD-L1 therapy (31). Based on 
previous studies, we expected additional immunological markers to correlate with smoking status. The 
lack of  correlation we found between smoking status and PD-L1 IHC may be due to low sample number 

Figure 8. B cell abundance and phenotype in NSCLC. (A) Flow cytometry profiling of NSCLCs revealed a small but reproducible population of IL-10+ B 
cells in tumor tissue but not normal lung. (B and C) CD19+ B cells were sorted from tumor and normal lung and analyzed by single-cell RNA sequencing. 
IL-10–producing B cells were present in tumors but not normal lung and display a unique transcriptional profile representative of plasma B cells, oxidative 
metabolism, and MYC activation.
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(9 TC+PD-L1+), but leukocyte abundance and phenotype also did not differ between smokers and never 
smokers (Figure 3A and Figure 4A). We then broke down smoking status by the more quantitative metric 
of  pack years and found that smoking status weakly correlates with immunophenotype (Figure 5I). It is 
well established that smokers have higher response rates to anti–PD-1/PD-L1 therapy. The recent study by 
Rizvi et al. confirmed that mutation burden as well as presence of  mutations in DNA repair genes were cor-
related with anti–PD-1 response (36). One limitation of  our study is that we did not perform whole-exome 
sequencing on our cohort to assess a molecular smoking signature that has been shown to correlate with 
immunotherapy efficiency better than self-reported smoking status. However, the number of  mutations 
identified using our smaller focused sequencing panel correlated with our immunophenotypic clusters, sug-
gesting the possible use of  simple flow-profiling platforms as part of  patient stratification for the treatment.

B cells may be protumorigenic or antitumorigenic or even phenotypically heterogeneous within and 
across tumors (37). In light of  the ongoing phase Ib/II clinical trial (NCT02403271) using combination 
PD-L1 inhibitor (durvalumab) and BTK inhibitor (ibrutinib) for treatment of  NSCLC, and the ambiguity 
as to the role of  B cells in NSCLC, we thought a deeper analysis of  tumor-associated B cells was warranted. 
B cells as components of  TLSs are good prognostic factors in cancer (27), whereas IL-10–producing Bregs 
are regarded as negative (28). We found TLSs in 20 of  22 NSCLCs assayed, but there was no association 
between “hot” or “cold clusters (Supplemental Figure 7E). We consistently identified a small proportion of  
IL-10–producing B cells in our NSCLC samples that were absent in normal lung tissue (Figure 8A). Bregs 
are identified by expression of  the surface markers CD19+CD24hiCD38hiCD5+CD1dhi, CD24hiCD27+, 
and recently Bregs isolated from hepatocellular carcinoma have been shown to be PD-1hiCD5hiCD24–/+C-
D27hi/+CD38dim (28, 38). We sorted B cells from one tumor and performed RNAseq on single cells. We used 
the expression of  IL-10 as our marker for Bregs, as it is the only consistently expressed gene shared across 
Breg nomenclatures. IL-10–producing B cells comprised 11% of  tumor-sorted B cells (9 of  83) and were 
absent from normal lung-sorted B cells (0 of  47). Interestingly, IL-10–producing B cells were not enriched 
in canonical Breg surface antigens CD24, CD27, or CD38, which may highlight the limitation of  profiling 
of  Bregs by flow cytometry and explain the reported diversity of  phenotypic markers. This exploratory 
data set provides a proof  of  principle for the single-cell expression profiling of  tumor-infiltrating B cells 
and a glimpse at their transcriptional profile. Unlike FOXP3+ Tregs, it has been reported that Bregs do 
not irreversibly lineage commit at an early developmental point but can adopt a regulatory phenotype at 
various stages along the B cell developmental continuum (28). The IL-10–producing B cells we analyzed 
by single-cell RNAseq resemble a plasma cell phenotype, with hallmarks of  MYC activation and oxidative 
metabolism (Figure 8, B and C). More analysis is needed to fully deconstruct Breg transcriptional profiles.

It is likely that the presence of  leukocytes in the tumor at time of  immunotherapy and the expression 
of  inhibitory receptors by tumor-resident T cells — immunologically “hot” versus “cold” — are the critical 
factors predicting response to anti–PD-1/PD-L1 therapeutics (8). Traditional stratifying clinical criteria, 
such as oncogenic driver, do not predict immunophenotype and, therefore, may not inform the use of  
checkpoint blockade. NSCLCs clearly fall into immunologically “hot” or “cold” clusters, and only inte-
gration of  flow-based, immunohistochemical, and transcriptomic immunophenotyping can differentiate 
between the two. It is tantalizing to hypothesize that as few as 3 markers (Figure 7) can recapitulate more 
comprehensive immunophenotyping to determine whether a NSCLC is “hot” or “cold” and, hence, more 
amenable to immunomodulatory therapy. This study defines the broad spectrum of  immunophenotypes 
that constitute NSCLC and sets the stage for future prospective studies to identify immune cell–based bio-
marker signatures predictive of  response and resistance to immunotherapies.

Methods
Tumor preparation, flow cytometry, and antibodies. Fresh tissue was minced in a 10-cm dish then resuspended 
in dissociation buffer consisting of  RPMI (Life Technologies) +10% FBS (HyClone), 100 U/ml collage-
nase type IV (Life Technologies), and 50 μg/ml DNase I (Roche) at a ratio of  5 ml of  dissociation buffer to 
500 mg of  sample. Suspension was incubated at 37°C for 45 minutes and then further dissociated by being 
passed through a syringe. Red blood cells were removed from samples using red blood cell lysis buffer (Bio-
Legend). Samples were pelleted and then resuspended in fresh RPMI +10% FBS and strained over a 70-μm 
filter. Cells were incubated with the Live/Dead Fixable Yellow Dead Cell Stain Kit (Life Technologies) for 
8 minutes in the dark at room temperature or Live/Dead Fixable Zombie NIR (Biolegend) for 5 minutes in 
the dark at room temperature in FACS buffer (PBS +2% FBS) at a ratio of  250 μl L/D 1X dilution to 100 
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mg of  original sample weight. Surface marker and intracellular staining were performed according to the 
manufacturer’s protocols (eBioscience). FcR was blocked prior to surface antibody staining using Human 
FcR Blocking Reagent (Miltenyi). Cells were fixed in 1% PBS +2% FBS and washed prior to analysis on 
a BD FACSCanto II HTS cell analyzer or BD LSRFortessa with FACSDiva software (BD Biosciences). 
Data were analyzed using FlowJo software version 10.0.8. Cell viability was determined by negative live/
dead staining. Antibodies were specific for the following human markers: CD3 (HIT3a; UCHT1), CD8 
(RPA-T8), CD14 (M5E2; MphiP9), CD24 (ML5), CD45 (HI30), CD56 (B159), CCR7 (150503), EpCAM 
(EBA-1), HLA-DR (G46-6), PD-1 (EH12.1), and IgG1 isotype control (MOPC-21) from BD Bioscienc-
es; CD3 (UCHT1), CD4 (RPA-T4), CD14 (M5E2), CD15 (W6D3), CD16 (3G8), CD19 (HIB19), CD20 
(2H7), CD21 (Bu32), CD25 (BC96), CD27 (M-T271), CD33 (WM53), CD38 (HIT2), CD40L (26–33), 
CD45 (HI30), CD45RA (HI100), CD45RO (UCHL1), CD56 (HCD56; 5.1H11), CD66b (G10F5), CD69 
(FN50), CD83 (HB15e), CD123 (6H6), CD160 (BY55), CD163 (GHI/61), CTLA-4 (L3D10), CXCR5 
(J252D4), EpCAM (9C4), HMGB1 (3E8), IgM (MHM-88), Ki-67 (Ki-67), PD-1 (EH12.2H7), PD-L1 
(29E.2A3), PD-L2 (24F.10C12), TIM-3 (F38-2E2), NKG2D (1D11), NKp46 (9E2), IgG2a isotype con-
trol (MOPC-173), IgG2b isotype control (MPC-11), and IgG1 isotype control (MOPC-21) from BioLeg-
end; Pan-cytokeritin (C11) and PD-L1 (E1L3N) from Cell Signaling Technologies; CD45 (2D1), FOXP3 
(236A/E7), and IL-10 (236A/E7) from Affymetrix/eBioscience; and LAG3 (polyclonal) and isotype con-
trol (polyclonal) from R&D Systems.

Collection of  surgical samples. NSCLC tumors, matched normal lung, and, where available, peripheral 
blood, were obtained from 51 patients. Tumor samples were collected into sterile medium (DMEM +FBS) 
and stored on ice before dissociation, which was begun 30–45 minutes after resection. The histological 
subtype of  tumors was confirmed by a board-certified pathologist with expertise in thoracic malignancies 
(LMS). Patients from all disease stages were selected in an unbiased manner over a 2-year period. The pro-
spective nature of  this study assumed heterogeneity in immune profiles.

Tumor genotyping via digital droplet PCR. Cryosections from tumor tissue samples underwent DNA 
extraction using the Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s protocol. DNA 
was then eluted in 102 μl of  AVE buffer and stored at –80°C until genotyping was performed. Digital 
droplet PCR–based (ddPCR-based) genotyping was performed for EGFR mutations, specifically exon 
19 del and L858R, and KRAS mutations, specifically condon 12 mutation and G13D. The develop-
ment of  this assay has been previously described (39). Briefly, diluted tumor DNA was emulsified into 
approximately 20,000 droplets and mixed with appropriate primers/probes and PCR mastermix; then 
PCR was carried out to endpoint. Droplets were then read in a flow cytometer (QX200 Droplet Reader, 
Bio-Rad), and fluorescence signal was quantified in order to determine the number of  copies of  mutant 
and wild-type alleles per μl of  the reaction. Extracted DNA was quantified by UV-Vis spectrophotom-
eters and diluted to 2,000 genetic equivalents/μl (Thermo Scientific). Genotyping of  tumor DNA was 
then performed using ddPCR reagents (Bio-Rad) and primer/probe mixes, which were custom-made by 
Life Technologies. For EGFR L858R assay, primer sequences were as follows: forward, 5′-GCAGCAT-
GTCAAGATCACAGATT-3′, reverse, 5′-CCTCCTTCTGCATGGTATTCTTTCT-3′; probe sequenc-
es were as follows: 5′-VIC-AGTTTGGCCAGCCCAA-MGB-NFQ-3′, 5′-FAM-AGTTTGGCCCG-
CCCAA-MGB-NFQ-3′. For EGFR del19 ddPCR assay, primer sequences were as follows: forward, 
5′-GTGAGAAAGTTAAAATTCCCGTC-3′, reverse, 5′-CACACAGCAAAGCAGAAAC-3′; probe 
sequences were as follows: 5′-FAM-AGGAATTAAGAGAAGCAACATC-MGB-3′ (ex19 deletion hotspot 
probe), 5′-VIC-ATCGAGGATTTCCTTGTTG-MGB-3′ (ex19 reference probe). For KRAS G12A assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GCTGTATCGTCAAGGCACTCTT-3′; probe sequences were as follows: 5′-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3′, 5′-FAM-TTGGAGCTGCTGGCGTA-MGB-NFQ-3′. For KRAS G12C assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GCTGTATCGTCAAGGCACTCTT-3′; probe sequences were as follows: 5′-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3′, 5′-FAM-TTGGAGCTTGTGGCGTA-MGB-NFQ-3′. For KRAS G13D assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GAATTAGCTGTATCGTCAAGGCACT-3′; probe sequences were as follows: 5′-VIC-CTTGCCTACG-
CCACCAG-MGB-NFQ-3′, 5′-FAM-CTTGCCTACGTCACCAG-MGB-NFQ-3′. For KRAS G12D assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GCTGTATCGTCAAGGCACTCTT-3′; probe sequences were as follows: 5′-VIC-TTGGAGCTGGT-

Downloaded from http://insight.jci.org on October  5, 2016.   http://dx.doi.org/10.1172/jci.insight.89014



1 5insight.jci.org   doi:10.1172/jci.insight.89014

C L I N I C A L  M E D I C I N E

GGCGTA-MGB-NFQ-3′, 5′-FAM-TTGGAGCTGATGGCGTA-MGB-NFQ-3′. For KRAS G12V assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GCTGTATCGTCAAGGCACTCTT-3′; probe sequences were as follows: 5′-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3′, 5′-FAM-TTGGAGCTGTTGGCGTA-MGB-NFQ-3′. For KRAS G12S assay, 
primer sequences were as follows: forward, 5′-GCCTGCTGAAAATGACTGAATATAAACT-3′, reverse, 
5′-GCTGTATCGTCAAGGCACTCTT-3′; probe sequences were as follows: 5′-VIC- TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3′, 5′-FAM-TAGTTGGAGCTAGTGGCGTA-MGB-NFQ-3′. Analysis of  the 
ddPCR data was performed with QuantaSoft analysis software (Bio-Rad) that accompanied the droplet 
reader. Positive and negative clusters were set using the FAM and VIC thresholds based on the amplitude 
of  positive controls that were ran concomitantly with each assay.

mRNA analysis. Total RNA was extracted using the Qiagen RNeasy kit or Arcturus PicoPure RNA Iso-
lation Kit. RNA quality and concentration was assessed using an Agilent Bioanalyzer 2100. For each sam-
ple, mRNA transcript abundance for 770 genes of  interest was quantified using the Nanostring nCounter 
Human PanCancer Immune Profiling Panel according to the manufacturer’s protocol from 100 ng of  total 
RNA and analyzed using nSolver 2 software and the HumanPanCancerImmunology_1.0.36 analysis mod-
ule. Differential expression of  genes in response to “hot” versus “cold” sample breakdown was performed 
in the Advanced Analysis module of  nSolver. For each gene, a single linear regression was fit using all 
selected covariates to predict expression. Output is shown with nonadjusted P value as well as Benjami-
ni-Hochberg FDR. Univariate box/violin plots were generated via Gene Descriptive Analyses module. 
Nanostring array data have been deposited in the NCBI GEO public data repository (reference series acces-
sion GSE84799).

IHC. Four-micron-thick sections of  formalin-fixed, paraffin-embedded tissue were baked at 37°C over-
night, deparaffinized, and rehydrated. Peroxidase activity was blocked with 1.5% hydrogen peroxide in 
methanol for 10 minutes. Antigen retrieval was performed in a Decloaking Chamber NxGen pressure cook-
er (Biocare Medical) at 120°C in Dako Target Retrieval Solution (Dako). For PD-L1/Pu.1 double staining, 
sections were first incubated with anti-PU.1 (BD Bioscience) at 1:100 for 40 minutes at room temperature. 
Anti-mouse Dako EnVision+ System-HRP (DAB) was used for the detection. Following the wash, sections 
were incubated with anti–PD-L1 (CST) at 1:200 for 40 minutes at room temperature. PowerVision Poly-AP 
Anti-Rabbit IgG (Leica)with Permanent Red was used for the detection. For B cell–specific activator pro-
tein (BSAP or PAX5)/CD3 double IHC staining, sections were first incubated with anti-PAX5 (Abcam) at 
1:30 for 40 minutes at room temperature. Dako EnVision+ anti-Rabbit (DAB) was used for the detection. 
Sequentially sections were incubated with anti-CD3 (Dako) at 1:300 for 40 minutes at room temperature. 
Leica’s PowerVision Poly-AP Anti-Rabbit IgG with Permanent Red was used for the detection. All sections 
were counterstained with Mayer’s Hematoxylin.

PD-L1 expression in tumor cells was considered positive if  ≥1% of  tumor cells had membranous stain-
ing of  any intensity. Pu.1 is a transcription factor of  B lymphocytes and cell myeloid lineages, among which 
it is overexpressed in monocytes, histiocytes, and dendritic cells. Pu.1 expression is restricted to the nucleus 
and was examined simultaneously to better assess PD-L1 staining in immune cells. Alveolar macrophages 
have been shown to express multiple markers nonspecifically and were excluded from analysis.

BSAP is a transcription factor expressed in the nuclei of  pro, pre, and mature B cells. B cell quantifica-
tion was performed using the Positive Pixel Count v9 algorithm by Aperio (Leica). Intensity of  weak pixels 
(Iwp[High] parameter) was changed from 220 to 180 to adjust to hematoxylin staining on nuclei as a proxy 
for total cell count. DAB staining for BSAP was counted as the number of  strong positive pixels. Permanent 
red staining for CD3 was detected as positive pixels; however, some areas of  darker hematoxylin as well as 
nonspecific staining in alveolar macrophages were also detected as positive pixels, preventing correct quan-
tification of  CD3 staining. The BSAP score was generated by dividing the number of  strong positive pixels 
by the area score (number of  negative + positive + strong positive pixels multiplied by 10e8).

TLSs are lymph node–like arrangements of  several immune cell types (primarily B and T lymphocytes) 
recently shown to play an important role in tumor microenvironment (40). TLS were counted manually on 
Aperio-scanned slides with the minimal zoom of  ×0.5. At this resolution, 130- to 200-μm clusters of  B and 
T cells were visible and counted as small, 200~300 μm clusters of  B and T cells were counted as medium, 
and >300 μm clusters of  B and T cells were counted as large TLSs (Supplemental Figure 7). TLS score is 
reported as the number of  small TLSs plus the number of  medium TLSs multiplied by 2, plus the number 
of  large TLSs multiplied by 3, and divided by area score from B cell quantification. All the slides were eval-
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uated and scored blinded to clinical data.
Single-cell RNAseq. Live CD45+CD19+ cells were sorted directly into 2 μl of  Qiagen TCL buffer in 

Eppendorf  TWIN.TEC skirted 96-well plates. The SmartSeq2 libraries were prepared according to the 
SmartSeq2 protocol (29, 41) with some modifications (42). Briefly, total RNA was purified using RNA-
SPRI beads. Poly(A)+ mRNA was converted to cDNA, which was then amplified. cDNA was subjected 
to transposon-based fragmentation that used dual indexing to barcode each fragment of  each converted 
transcript with a combination of  barcodes specific to each sample. In the case of  single-cell sequencing, 
each cell was given its own combination of  barcodes. Barcoded cDNA fragments were then pooled prior to 
sequencing. Paired-end (PE) sequencing was carried out twice with 25-bp reads, with an additional 8 cycles 
for each index. The Smart-Seq2 data was processed at the Broad Technology Labs according to established 
computational pipeline. Data were separated by barcode and aligned using Tophat version 2.0.10 (43) with 
default settings. PE 25-bp reads were mapped to the UCSC human genome (hg19) by Bowtie2/Tophat 
(44) using the Broad pipeline. Only cells that had a minimum of  100,000 PE reads, with at least 20% 
aligning to the genome, were retained for further analysis. FeatureCounts (45) was used to count features 
based on the Gencode v19 (http://www.gencodegenes.org/) transcriptome annotation. Features that were 
not detected in more than 10 cells were removed. High-quality single cells were further selected based on 
feature complexity, read distribution, and number of  genes detected. In total 47 normal and 83 tumor cells 
were retained in this process. DESeq2 (46) was used to detect differentially expressed genes between groups 
based on raw counts. Counts were normalized according to their library size and displayed as log2(normal-
ized counts + 1). IL-10 high and low clusters were classified based on Kmeans clustering on log2(normal-
ized counts) excluding cells with no detectable IL-10 expression. To identify positive or negative enriched 
biological or molecular signatures between the IL-10 high and low population we applied the GSEA tool 
(47) on the DESeq2-generated list of  differentially expressed genes. This list was preranked based on the 
multiplication value of  log2 fold change and –log10(adjusted P value). To estimate clonality of  B cell Ig-pro-
ducing cells, we summed all reads of  genes that are located in κ and λ loci, respectively, as well as all reads 
of  IGK and IGL genes annotated by Gencode v19, and calculated the κ/λ ratio (Igκ/IGgλ). Cells with a 
ratio between 1:3 and 3:1 were considered to express both loci. Cells with ratios >3:1 or <1:3 were defined 
κ- or λ-producing cells, respectively. Single-cell RNAseq NGS data have been deposited in the NCBI GEO 
public data repository (reference series accession GSE84799).

Statistics. The unsupervised nonlinear dimension reduction method t-SNE (19, 20) was applied to inves-
tigate in reduced dimension space how 51 tumors are located in relation to each other based on multipara-
metric flow cytometry data. t-SNE denotes a tree-based algorithm, which minimizes the divergence of  
neighborhood closeness moving from high dimensions to low dimensions. For the embedding, 15 param-
eters were used, which are listed in Supplemental Figure 9. P values of  less than 0.05 were considered 
significant. Unpaired, 2-tailed Student’s t test was used to assess significance. More in-depth descriptions 
are given in individual figure legends.

Study approval. The present studies were reviewed and approved by the Dana-Farber/Harvard Cancer 
Center (DF/HCC) institutional review board (Boston, Massachusetts, USA) under protocol 98-063 and 
all were performed in accordance with relevant guidelines and regulations. Written informed consent was 
obtained from all subjects prior to participation in this study. Informed consent by patients to DF/HCC 
protocol 02-180 enabled collection of  clinical and demographic data, genomic characterization by Onco-
Panel, and analysis of  tissue by IHC.
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